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ABSTRACT: The observation techniques used in satellite geodesy can be subdivided in different ways. 
One possibility has been alrcady introduced in, namely a classification determined by the location of the 
observation platform 
- Earth based techniques (ground station         satellite), 
- satellite based techniques (satellite          ground station), 
- inter-satellite techniques (satellite         satellite). 
Another classification follows from the observables in question. A summary of the most important 
operational techniques is given. References to the specific artificial satellites are included. 
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INTRODUCTION 

 
 In this study a brief overview of the principal observation techniques, is given. 
The fundamental equation of satellite geodesy can be formulated as (see Fig 1.1) 
                                              r S(t) = rB(t)+ ρ(t) 
     or 
                                              r j(t) = ri(t) + ∆ri j(t). 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 For a solution to equation (1.1) we have to establish a relation between the observations, characterized by the 
vector ∆ri j(t), and the Parameters which describe the satellite position rj(t) as well as the location of the observation 
station ri(t). In the estimation process either all parameters can be treated as unknowns, or some of the parameters 
are considered to be known, in order to stabilize and to simplify the solution. In general, a nonlinear observation 
equation model between the observations and the parameters is introduced:  

Figure 1 Basic relations for satellite observations 
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L + υ = Φ(X), 
with 
L the vector of the observations, 
X the vector of the unknown parameters, 
Φ  a nonlinear vectorial function, and υ  the vector of the residuals, containing the unmodeled components of the 
total estimation Process. The observation equation (1.2) can be linearized when approximate values Xo are 
introduced for the unknown parameters. With 
 
                                                                  L0 = Φ(X0)  
 
it follows that the vector of residual observations 
                                                                     l = L – L0                                                    (1.3)  
and the vector of residual parameters  
                                                                     x = X – X0.                                                  (1.4)   
The linear form of (1.2) is then 
                                                                     l + υ = AX.                                                   (1.5)   
 
 The design matrix A contains the partial derivatives of the observations with respect to the parameters, 
developed around the approximate point of expansion X0: 
 

                                                                       𝐴 = (
𝜕𝛷(𝑋)

𝜕𝑋
)0.                                                 (1.6)  

 
 The system of equations (1.5) can be solved in a least-squares adjustment process, based on the minimization 
of the function  
                                                                     υT Pυ         minimum,                                   (1.7)  
  
 and yields a best estimate x of the unknown parameters. P denotes the weight matrix of the observations. For a 
full treatment of the subject see textbooks on adjustment or estimation techniques, for instance Wolf (I97S); 
Pelzer(1985); Koch (1990); Niemeier (2002). Textbooks with special emphasis on GPS techniques are Leick (1995) 
and Strang, Borre (1997)- The modern term estimation used in this book is equivalent to the classical term 
adjustment. 
 
The parameters in equation (1.2) to (1.5) can be subdivided into different groups, for instance into: 
 (1) Parameters describing the geocentric motion of the observation station r B (t). The first of these are the 
geocentric station coordinates. Then there are geo- dynamic parameters, describing the relation between the Earth-
fixed terrestrial reference system and the space-fixed inertial reference system, namely the polar motion and Earth 
rotation parameters. Also belonging to this group are the parameters used for the modeling of solid Earth tides and 
tectonic crustal deformations. Finally, the transformation parameters between geocentric and particular geodetic or 
topocentric reference frames may be considered. 
 (2) Parameters describing the satellite motion rS(t). These are, besides the satellite coordinates, the harmonic 
coefficients of Earth's gravity field, and parameters describing other gravitational or non-gravitational perturbations, 
like the solar radiation pressure. 
 (3) Parameters influencing directly the observations ρ(t). These are e.g. atmospheric parameters, clock 
parameters, and signal propagation delays. 
 It is obvious that a complete solution, where all parameters are determined simultaneously, cannot be obtained 
by simple means. Certain conditions, or requirements, have to be introduced in order to avoid a singularity of the 
equation system. The combined determination of coordinates and gravity potential coefficients is often called a 
satellite solution or only a solution; the product is named an Earth model. 
 In general only a few particular parameters or groups of parameters are of interest, and the other parameters 
are considered to be known values. The satellite orbit is often treated as known when the coordinates of the 
observation stations are to be estimated. For the determination of polar motion parameters and universal time, the 
coordinates of the control stations and Earth's gravity field are usually introduced from other solutions. 
 The parameters of group (3), the so-called bias parameters, have a more technical meaning, and are mostly 
treated at a preprocessing stage. 
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 Instead of estimating the parameters during the adjustment process, they can be eliminated through a suitable 
arrangement of observations. They are cancelled when simultaneous observations at different stations are different. 
This technique is often applied for the parameters of group(3). The satellite coordinates can also be eliminated, and 
need no longer be treated as unknown parameters, when observations are made simultaneously at a sufficiently 
large number of stations. The observation technique becomes more geometric in character. This geometrical concept 
of satellite geodesy was used particularly with camera observations. 
 Geometrical methods are by their nature relative methods, and they do not provide geocentric coordinates. This 
is why some problems in satellite geodesy cannot be solved with the geometrical methods. 
 Dynamical methods of satellite geodesy are used, when a force model is required for the description of the 
satellite motion. The orbit must either be known from external sources, for instance from an ephemeris service, or 
the orbit must be determined within the adjustment process, be it completely, or partially. Different concepts are in 
use. 
 When simultaneous observations are available from at least two stations, corrections to some particular orbital 
elements or "degrees of freedom" (up to six in number) can be estimated for a short portion of the orbit, together with 
the other adjustment parameters. This procedure is also called "adjustment with a relaxed orbit", or the semi-short-
arc method. No particular forces acting on the satellite are considered in this technique; rather some of the degrees 
of freedom in the satellite orbit (orbital parameters) are eliminated via a geometric procedure. 
 A further step is that for a short portion of the orbit, based on a given force field, some orbital elements are 
estimated as parameters from the observations. This procedure is called the short-arc method. For even longer 
orbits, of several. revolutions, a larger number of perturbation parameters must be estimated (ef. Figure  2). The term 
for this technique is the long-arc method. The method is used e.g. for the parameter estimation of polar motion, Earth 
rotation, solid Earth tides, and the anomalous gravity field of Earth. 
 

 
 

Figure 2. Role of the satellite orbit in the parameter estimation process 
 

 Long-arc methods are mostly used for the analysis of scientific problems. For operational tasks of applied satellite 
geodesy, the orbit is either taken as known, or a limited number of parameters are estimated for the orbit improvement 
within the adjustment process. For global radio navigation systems, like GPS, in general no orbit improvement is 
necessary because very precise orbits are available through particular services like the International GPS Service 
(IGS).  
 With observations from a single station the parameter estimation process is usually restricted to the 
determination of the station coordinates only. The number of parameters can be increased when simultaneous 
observations are available from several stations; corrections to the satellite orbit and observation biases may then 
be estimated.  
 For the solution of a general and global parameter estimation problem, observations to a large number of different 
satellites are required from many globally distributed stations. Figure 3 contains a schematic representation 
concerning the process of observation and parameter estimation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Functional scheme for the use of satellite observations 
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RESULTS AND DISCUSSION 
 
Discussion: 
1.1  Determination of Directions 
 Photographical methods are almost exclusively used for the determination of directions. An artificial satellite 
which is illuminated by sunlight, by laser pulses, or by some internal flashing device, is photographed from the ground, 
together with the background stars. The observation station must be located in sufficient darkness on the night side 
of Earth. The stars and the satellite trajectory form images on a photographic plate or film in a suitable tracking 
camera, or on a CCD sensor. The photogram provides rectangular coordinates of stars and satellite positions in the 
image plane, which can be transformed into topocentric directions between the observation station and the satellite, 
expressed in the reference system of the star catalog (equatorial system, CIS). 
 Two directions, measured at the same epoch from the endpoints of a given base line between observing stations, 
define a plane in space whose orientation can be determined from the direction cosines of the rays. This plane 
contains the two ground stations and the simultaneously observed satellite position. The intersection of two or more 
such planes, defined by different satellite positions, yields inter station vector between the two participating 
groundstations (Figure 4). When more stations are involved, this leads to regional, continental, or global networks. 
Note that these networks are purely geometric. 
 Direction measurements have also been used for orbit determination, and they were introduced into early 
comprehensive solutions for Earth models (gravity field coefficients and geocentric coordinates). Some satellites are 
equipped with laser-reflectors. In such cases the directions and ranges can be determined simultaneously, and 
provide immediately the vector ρ(r) between the ground station and the satellite. 
 
 
 
 
 

 
 
 
 

Figure 4. The use of directions with satellite cameras 

 
 Initially passive balloon satellites were used as targets, such as the first experimental telecommunication 
satellites, ECHo-1 and ECHO-2. In 1966 a dedicated geodetic balloon satellite, PAGEOS (PAssive GEOdetic 
satellite), with a diameter of 30 m was launched for the observation of the BC4 world Network. The satellite was 
placed into an orbit of about 3000 to 5000 km altitude and was used for about six years. Today, laser pulses can be 
reflected by satellites equipped with corner cube reflectors, and be used for the determination of precise directions. 
However, the achievable accuracy is very low when compared with modern ranging methods. This is why today the 
measurement of directions only plays a minor roll in satellite geodesy. 
 A certain revival took place with the launch of the Japanese Geodetic satellite AJISAI in 1986 (Sasaki, 1983; 
Komaki ., 1985), A modern  application is the use of powerful CCD-techniques for the directional observation of 
geostationary satellites. 
 Directional information can also be derived by analysis of electromagnetic signals transmitted from a satellite. 
The related techniques, which have been realized so far, yield only a rather low accuracy. very Long Baseline 
Interferometry (VLBI), on the other hand, is one of the most accurate observation techniques in geodesy, and 
provides precise directions to extragalactic radio sources. The application of the VLBI technique using radio signals 
from artificial satellites is under discussion 
 
1.2 Determination of Ranges 
 For the determination of distances in satellite geodesy the propagation time of an electromagnetic signal between 
a ground station and a satellite is measured. According to the specific portion of the electromagnetic spectrum we 
distinguish between optical systems and radar systems. 
 optical systems are weather-dependent. Laser light is used exclusively, in order to achieve the required signal 
strength and quality. Radar systems are weather independent; wavelengths of the centimeter and decimeter domain 
are used. The propagation behavior, however, is significantly affected by atmospheric refraction. 
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 We distinguish the one-way mode and the two-way mode. In the two-way mode the signal propagation time is 
measured by the observer's clock. The transmitter at the observation station emits an impulse at epoch t j. The impulse 
is reflected by the satellite at epoch tj + Δtj, and returns to the observation station where it is received at epoch tj + 
Δt'j. The basic observable is the total signal propagation time Δtj. Without considering relativistic effects, we 
find                                 Δtj = 2 Δt'j 
 Following Figure 5 with c being the signal propagation velocity, we obtain the basic equation for the distance 
measurement in the two-way mode: 

|rj − ri| =  |∆rij| =
1

2
c. ∆tj                                                              (1.8)   

One typical example for this mode is the Satellite Laser Ranging (SLR) tech nique. The observer,s clock can 
also be placed in the satellite, e.g. for space borne laser, or radio systems like PRARE. 

 
 
 

 
 
 
 
 
 

Figure 5. Concept of range measurements to satellites 

  
 In the one-way mode we assume that either the clocks in the satellite and in the ground receiver are synchronized 
with each other, or that a remaining synchronization error can be determined through the observation technique. This 
is, for instance, the case with the Global Positioning System (GPS) W. Equation (1.8) simplifies to 

|∆rij| = c. ∆tj     (1.9) 

 Further we distinguish between either impulse or phase comparison methods. when a clear impulse can be 
identified, as is the case in satellite laser ranging, the distance is calculated from the signal propagation time using 
equation(1.8).  
 With the Phase comparison method, the phase of the carrier wave is used as the observable.In the two- way 
mode the phase of the outgoing wave is compared with the phase of the incoming wave. In the one-way mode the 
phase of the incoming wave is compared with the phase of a reference signal generated within the receiver In both 
cases the observed phase difference, ΔΦ, corresponds to the residual portion, Δλ, of a complete wavelength. The 
total number, N, of complete waves between the observer and the satellite is at first unknown. This is the ambiguity 
problem. The corresponding equation in the two-way mode is 
 

                                                           |∆rij| =
1

2
(∆λ + Nλ).                                             (1.10) 

 

 The factor 
1

2
 disappears in the one-way mode. Different methods are used for the solution of the ambiguity term 

N, for example: 
- measurements with different frequencies (e.g. SECOR), 
- determination of approximate ranges with an accuracy better than λ/2 (e.g. GPS 
with code and carrier Phases), 
- use of the changing satellite geometry with time (e.g. GPS carrier phase observations), 
- ambiguity search functions (e.g. GPS), 
  and phase comparison methods also show differences with respect to the signal propagation in the high 
atmosphere. Distances derived from phase measurements depend on the phase velocity υP of the particular 
frequency, whereas distances derived from impulse measurements are based on the respective group velocity υg. 
The ionosphere is a dispersive medium, and hence the phase velocity is greater than the group velocity. 
 Distinct satellites are used for the different methods of range measurements. For satellite laser ranging (SLR) 
the satellites are equipped with suitable reflectors. Dedicated laser satellites are for example LAGEOS-1,2 (LAser 
GEOdynamic Satellite; orbital height about 5900 km), STARLETTE and STELLA (orbital height about 800km). There 
are now about 70 satellites equipped with laser reflectors.  
 Those satellites designed to operate in the radio frequency domain must carry suitable electronic equipment and 
antennas. For the two-range mode this equipment is sometimes called a transponder. When ranges are determined 
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simultaneously between three known ground stations and at least three different satellites the unknown coordinates 
of a station relative to the stations whose coordinates are known can be derived. This procedure has been used on 
a regular basis with the SBCOR System, and it can also be used in satellite laser ranging (SLR) under favorable 
atmospheric conditions. Similarly, the unknown coordinates of ground stations can be derived from three satellites 
whose positions are known in the two-way mode, and from four satellites whose positions are known in the one-way 
mode. 
 In many cases the often high data rate of range observations, (e.g. one observation per second) is not required 
in the subsequent analysis process. The data are hence compressed to so-called normal points. For details of normal 
point generation see. 
  
1.3 Determination of Range Differences (Doppler method) 
 Fig1.6 illustrates the geometrical principle of position determination from range differences between one 
observer and two pairs of satellite positions. The satellite positions at epochs t l, t2 and t3 are taken as known.  Each 
of the observed range differences (Bt1 - Bt2) and (Bt2 Bt3) define a hyperbolic surface in three dimensional space. 
The observer (e.g.on a ship) is situated at the intersection of the hyperbolic surfaces with Earth,s surface. It becomes 
evident from geometrical considerations that with a single satellite pass only a two dimensional position can be 
determined. For a three-dimensional solution several satellite passes are required.  
 
 
 
 
 
 
 
 
 
 

Figure 6. Geometrical interpretation of the positioning with range-differences 

 
 The range differences are derived from the measurement of the frequency shift caused by he change of range 
between the observer and the satellite during a given satellite pass. The satellite transmits a signal of known 
frequency fs which is tracked by a ground receiver. The relative motion ds / dt between the receiver and the transmitter 
causes the received frequency fr (t) to vary with time as 

 

fr(t) = fs (1 −
1

c

ds

dt
).                                                                                         (1.11) 

  
 This is the well-known Doppler effect. The frequency shift in a given time interval tj, tk is observed, and is scaled 
into a range difference Δrijk (cf. Fig1.5) The related observation equation is  
   

|rk − ri| − |rj − ri| = |∆rik| − |∆rij| = |∆rijk|.                        (1.12) 

  
 The observation of the Doppler effect is frequently used in satellite geodesy. The technique is always applicable 
when a satellite, or a ground-beacon, transmits on a stable frequency. The orbital elements of the very first satellites 
were determined by observing the Doppler-shift of the satellite signals. The most important application of the Doppler 
method in geodesy has been with the Navy Navigation Satellite System (TRANSIT). A current space system based 
on the Doppler technique is DORIS. 

 The Doppler effect can also be used for the high precision determination of range rates |∆rjk| between satellites. 

This method is named Satellite-to-Satellite Tracking  (SST), and it can be applied to the mapping of a high resolution 
Earth gravity field 
 
1.4 Satellite Altimetry 
 This is a specific form of ranging, where the vertical distance between a satellite and  Earth,s surface, in particular 
the ocean surface, is measured. Satellite altimetry was the first operational satellite-borne observation technique in 
satellite geodesy. The satellite carries a radar-altimeter; no remote station on the ground is required. The  altimeter 
height, a0, above the sea surface is determined from the two-way travel-time of a radar impulse which is transmitted 
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from the satellite and reflected from the sea surface. The data are communicated in a suitable way from the satellite 
to the user.  
With a knowledge of the satellite orbit, the satellite altitude, h, above the Earth ellipsoid is also known and provides 
via the simplified relation  
                                                            M = h – a0                                                             (1.13) 
  
 The separation M between the mean sea level and the ellipsoid (Fig1.7). M approximately equals the geoid 
height; hence satellite altimetry can be used to determine the geoid over the oceans. A more sophisticated evaluation 
requires some corrections, in particular to model the separation between the instantaneous sea surface and the 
geoid, and to model the deviations between the true satellite trajectory and the computed orbit.  
 GEOS-3 and SEASAT-l were the first two satellites to carry radar altimeters and have been used extensively for 
geodetic purposes. Further altimeter satellites were GEOSAT, ERS-l, ERS-2, TOPEX/POSEIDON, GFO, JASON 
and ENVISAT, providing significant contributions to geodesy, geophysics, and oceanography. 
 
 
 
 
 
 
 
 

Figure 7 Simplified principle of satellite altimetry 

 
1.5 Determination of Ranges and Range-Rates (Satellite-to-Satellite Tracking) 
 This method can be used for mapping the high frequency components of Earth,s  
gravity field. The observables are the range and the range rate, i.e. the relative velocity between two satellites. 
Different concepts have been proposed and are already realized or at the stage of realization. In the low-high 
configuration a low orbiting satellite (LEO, a few hundreds of  kilometers orbital altitude) is combined with a satellite 
in a high (e.g, MEO or GEO) orbit, The advantage is that a rather long trajectory of the low orbiting satellite, which is 
particularly affected by high frequency components of the terrestrial gravity field, can be  
"seen" from the high orbiting satellite (Fig1.8). One example is CHAMP with GPS.  
 In the low-low configuration two satellites occupy the same low-altitude orbit separated by 100 to 300 km. A 
higher resolution of the gravity field is expected with this technique. The low-low configuration is used with GRACE. 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Principle of satellite-to-satellite tracking, high-low and low-low configuration 

 
1.6 Interferometric Measurements 
 The basic principle of interferometric observations is shown in Figure  9. A1 and A2 are antennas for the signal 
reception. When the distance to the satellite S is very large compared with the baseline length b, the directions to S 
from A1 and A2 can be considered to be parallel. From geometric relations we obtain 
 

                                                              d = A1P̅̅ ̅̅ ̅ = b. cosθ.                                              (1.14)   
 
 If λ is the wavelength of a continuous signal from the satellite, then the phase difference Φ, caused by the range 
difference d, can be observed at both antennas.  
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 The observed phase difference is uniquely determined only as a fraction of one wavelength; a certain multiple, 
N, of whole wavelengths has to be added in order to transform the observed phase difference Φ into the range 
difference d. The basic in terferometric observation equation is hence 
 

                                                          d = b. cosθ =
1

2π
Φλ + Nλ.                                      (1.15) 

 
 
 
 
 
 
 
 
 
 

 
Figure 9. Interferometric measurements 

 
 The interferometric principle can be realized through observation techniques in very different ways. Equation 
(1.15) contains different quantities which can be used as derived observables, namely.  
- the baseline length b between the two antennas,  
- the residual distance d between the antenna and the satellite, and  
- the angle θ between the antenna baseline and the satellite.  
 In each case it is necessary to know, or to determine, the integer ambiguity term N. The determination is possible 
through a particular configuration of the ground antennas, through observations at different frequencies, or through 
well defined observation strategies. One example for the determination of directions to satellites by interferometric  
measurements is with the classical Minitrack - System, where the individual antenna elements are connected with 
cables. The achievable accuracy, however, is not sufficient for modem requirements in satellite geodesy.  
 With increasing baseline lengths the antennas cannot be connected directly with cables. The phase comparison 
between the antennas must then be supported by the use of very precise oscillators (atomic frequency standards). 
This is, for instance, the case with the Very Long Baseline Interferometry (VLBI) concept.  
 When natural radio sources (e.g. quasars) are observed with the VLBI technique, the range difference d is not 
determined through methods of phase comparison, but by the correlation of the signals obtained at both antennas. 
The signal streams are registered together with precise timing signals at both antenna positions, and they are  
later shifted, one against the other, within a correlator, until the maximum correlation is obtained. The time delay τ 
corresponds to the signal travel time between P and A1,  and can be scaled to a range difference           

d = τ· c.                          (1.16) 
When artificial Earth satellites are used in the VLBI technique, .it cannot be assumed that the directions from the 
antennas to the satellites are parallel. Instead, the real geometry has to be introduced by geometric corrections; e.g. 
the wavefronts must be treated as curved lines.  
The interferometric principle has been widely used in the geodetic application of the GPS signals. Both methods 
described above for the determination of the range.  
 
Differences d are possible:  
 (a) The signals from the GPS satellites can be recorded at both antenna sites without any a priori knowledge of 
the signal structure, and later correlated for the determination of the time delay τ. A very large instrumental and 
computational effort is required, so the method is not really suitable for operational applications. It is, however, used 
to some extent in modem GPS receiver technology, in order to access the full wavelength of L2 under "Anti-Spoofing" 
(A-S) conditions.  
 (b) The phase of the carrier signal at both antenna sites can be compared, and  the difference formed. These so 
called single phase differences can be treated as the primary observables. The method is now widely used 
forprocessing GPS observations. 
 There are different opinions in the literature, on the extent to which method (b) (i.e. the use of phase differences) 
belongs to the class of interferometric observation techniques. Both terms, namely "interferometric techniques" and 
"phase differences", were often used as synonyms in the early GPS literature.  



J Nov. Appl Sci., 3 (S2): 1703-1711, 2014 

1711 
 

 
CONCLUSION 

 
 Besides the observables and observation techniques mentioned other methods were proposed, or are still in 
use, or are planned for forthcoming satellite missions. In many cases combinations of different observables are 
employed. One of the concepts proposed and now under development is satellite gradiometry. A gravity gra- diometer 
measures directly the second derivatives of Earth,s gravitational potential. It is very hard to achieve the required 
resolution with the available instrumentation. The same is true for the application of accelerometers in the satellite. 
A first mission based on this concept will be GOCE, planned for launch in 2006.  
 Earth observation satellites or remote sensing satellites carry a large quantity of sensors for the optical and 
microwave frequency domain. Of particular interest to geodetic applications is the Interferometric Radar (InSAR) 
technique which can be used to detect small deformations of Earth,s crust. 
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